Degeneration of Tame Automorphisms of a Polynomial Ring

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Stably Tame Polynomial Automorphisms

We study the structure of length three polynomial automorphisms of R[X, Y ] when R is a UFD. These results are used to prove that if SLm(R[X1, X2, . . . , Xn]) = Em(R[X1, X2, . . . , Xn]) for all n,≥ 0 and for all m ≥ 3 then all length three polynomial automorphisms of R[X, Y ] are stably tame. 1. Introducton Unless otherwise specified R will be a commutative ring with 1 and R = R[X ] = R[X1, ....

متن کامل

The Tame and the Wild Automorphisms of Polynomial Rings in Three Variables

Let C = F [x1, x2, . . . , xn] be the polynomial ring in the variables x1, x2, . . . , xn over a field F , and let AutC be the group of automorphisms of C as an algebra over F . An automorphism τ ∈ AutC is called elementary if it has a form τ : (x1, . . . , xi−1, xi, xi+1, . . . , xn) 7→ (x1, . . . , xi−1, αxi + f, xi+1, . . . , xn), where 0 6= α ∈ F, f ∈ F [x1, . . . , xi−1, xi+1, . . . , xn]....

متن کامل

Subgroups of Polynomial Automorphisms

Throughout this paper, k will denote a commutative ring containing the rational numbers Q, and k = k[x{, . . . , xn] will be the polynomial ring over k . If ƒ : k —• k is a polynomial map (i.e., a fc-algebra homomorphism), then ƒ is a polynomial automorphism provided there is an inverse ƒ " which is also a polynomial map. Very little is known about the group of polynomial automorphisms, and ind...

متن کامل

A ug 2 00 7 Automorphisms of a polynomial ring which admit reductions of type I

Recently, Shestakov-Umirbaev solved Nagata’s conjecture on an automorphism of a polynomial ring. To solve the conjecture, they defined notions called reductions of types I–IV for automorphisms of a polynomial ring. An automorphism admitting a reduction of type I was first found by Shestakov-Umirbaev. Using a computer, van den Essen–Makar-Limanov–Willems gave a family of such automorphisms. In t...

متن کامل

Automorphisms of a polynomial ring which admit reductions of type I Shigeru Kuroda

Recently, Shestakov-Umirbaev solved Nagata’s conjecture on an automorphism of a polynomial ring. To solve the conjecture, they defined notions called reductions of types I–IV for automorphisms of a polynomial ring. An automorphism admitting a reduction of type I was first found by Shestakov-Umirbaev. Using a computer, van den Essen–Makar-Limanov–Willems gave a family of such automorphisms. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2016

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2014.999935